在X射线计算机断层扫描(CT)成像中,重建内核的选择至关重要,因为它显着影响了临床图像的质量。不同的内核会以各种方式影响空间分辨率,图像噪声和对比度。涉及肺成像的临床应用通常需要使用软核和锋利核重建的图像。使用不同内核的图像重建需要原始的曲征数据,并为所有内核存储图像会增加处理时间和存储要求。视野的视野(DFOV)增加了内核合成的复杂性,因为在不同的DFOV上获得的数据表现出不同级别的清晰度和细节。这项工作为基于图像的内核综合使用基于模型的深度学习引入了有效的,DFOV - 敏锐的解决方案。提出的方法将CT内核和DFOV特性集成到正向模型中。对临床数据的实验结果,以及使用电线幻像数据对估计调制函数进行定量分析,清楚地证明了该方法实时的实用性。此外,缺乏正向模型信息的直接学习网络的比较研究表明,所提出的方法对DFOV变化更为强大。
主要关键词